Automated Cleaning Process Design for Nanofiltration (NF) Membranes
10 Jul 2025
Here is the professional English translation of the Automated Cleaning Process Design for Nanofiltration (NF) Membranes:
I. Automated Cleaning System Framework
graph LR
A[Fouling Monitoring] --> B[AI Fouling Type Identification]
B --> C{Decision Module}
C -->|Organic Fouling| D[Alkaline Protease Cleaning]
C -->|Inorganic Scaling| E[Citric Acid Cleaning]
C -->|Biofouling| F[NaClO + NaOH Cleaning]
D & E & F --> G[Automatic Execution Unit]
G --> H[Rinsing & Validation]
H -->|Pass| I[Resume Operation]
H -->|Fail| C
II. Core Automation Components
1. Smart Monitoring System
Sensor Type | Parameter | Trigger Threshold | Accuracy |
---|---|---|---|
Differential Pressure Transmitter | TMP (Transmembrane Pressure) | >1.5×Initial Value (e.g., 0.3→0.45 MPa) | ±0.5% FS |
Flowmeter | Permeate Flow | >15% decline for 30 min | ±1% RD |
Turbidimeter | Cleaning Effluent Turbidity | <10 NTU (Termination Criterion) | ±0.1 NTU |
Conductivity Meter | Cleaning Solution Concentration | Setpoint ±5% | ±1 μS/cm |
2. Chemical Dosing Unit (Modular Design)
| Tank | Chemical Formula | Concentration Control | Heating |
|----------|---------------------------------|--------------------------|---------|
| CIP1 | 0.1% NaOH + 0.05% SDS | Closed-loop PID | 40°C |
| CIP2 | 0.3% Citric Acid + 0.1% EDTA-2Na| Conductivity Feedback | - |
| CIP3 | 200ppm NaClO (pH=10.5 adjusted) | ORP Monitoring | Ambient |
| CIP4 | RO Water Rinse (≥50m³/h) | Turbidity Control | - |
III. Automated Cleaning Procedure (PLC+HMI Control)
Step 1 - Fouling Diagnosis
# Pressure & Flow Joint Algorithm
if (ΔP > 1.5*ΔP0) and (Flow < 0.85*Flow0):
activate_cleaning("Emergency Mode")
elif (Runtime > 168h):
activate_cleaning("Scheduled Cleaning")
Step 2 - Cleaning Sequence
Phase | Operation | Duration | Control Logic |
---|---|---|---|
Drainage | Drain membrane housings | 3 min | Level sensor = 0 |
Alkaline Wash | CIP1 recirculation (2.5× flux) | 45 min | pH=11.0±0.2 |
Acid Wash | CIP2 recirculation (2.0× flux) | 30 min | Conductivity ≥8000μS/cm |
Oxidation | CIP3 recirculation (1.8× flux) | 20 min | ORP ≥800mV |
Rinse | RO Water Pulse Flush (Fwd/Bwd) | 4 cycles ×5min | Effluent turbidity ≤1NTU |
Step 3 - Performance Validation
Recovery Rate = (Post-cleaning ΔP / Initial ΔP) × 100%
if Recovery Rate ≥ 95%:
Switch to production mode
else:
Activate AI diagnosis + Secondary cleaning
IV. Key Technical Parameters
Parameter | Design Value | Industry Standard |
---|---|---|
Temperature Control | ±1°C (PID) | ±3°C |
Dosing Accuracy | ≤±2% | ≤±5% |
Water Consumption | ≤3% System Capacity | ≤10% System Capacity |
Flux Recovery Rate | ≥98% (Organic Fouling) | 85-92% |
V. Safety Systems
-
Interlocks
- Isolate permeate line during cleaning (chemical contamination prevention)
- Pause program when chemical tank level <10%
-
Emergency Response
graph TB Over-Temp(>55°C) --> Cold_RO_Water_Injection Pressure_Surge(>1.8×DP) --> Emergency_Relief_Valve pH_Excursion(pH<3 or >12) --> Neutralization_Tank
-
Data Traceability
- Automated cleaning reports (ΔP/flow/conductivity trends)
- Fault code library (100+ failure scenario solutions)
VI. Operational Benefits
Metric | Manual Cleaning | Automated System |
---|---|---|
Cleaning Duration | 4-6 hours | 1.5 hours |
Chemical Waste | 15-25% | ≤3% |
Membrane Lifespan | 2-3 years | 4-5 years |
Human Intervention | Continuous oversight | Fully autonomous |
Case Data: Whey Protein NF Concentration System
| Fouling Type | Pre-clean Flux(LMH) | Post-clean Flux(LMH) | Recovery | |----------------|---------------------|----------------------|----------| | Protein Adsorption | 18.2 | 35.5 | 97.8% | | Ca Scaling | 15.7 | 32.1 | 96.4% | | Biofilm | 12.3 | 33.8 | 98.2% |
Tags: